Tracking bird movements using stable-hydrogen isotopes

Keith A. Hobson

Principles of isotopic tracking

- Animals move between unambiguous isotopically distinct "landscapes" and their tissues retain this information.
- Information "time window" depends on tissue chosen.
- Feathers are inert following formation and so lock in the isotope signal at the site of feather growth

N.A. avian band recoveries (1955-2000)

Species	Banded	recap	$\%$
Canada Goose	$2,991,538$	594,114	19.9
Mallard	$5,935,960$	878,704	14.8
N. Pintail	$1,286,499$	142,449	11.1
Merlin	26,308	674	2.6
Logg.shrike	22,897	196	0.86
Sp. sandpiper	13.673	79	0.58
R-t.	54,218	53	0.10
hummingbird			
Am. redstart	275,222	256	0.09
Myrtle warbler	824,013	704	0.09
W. flycatcher	28,194	20	0.07
Sw. thrush	371,313	251	0.07

So, there are good reasons to band birds but creating connectivity maps using band recoveries is not really one of them

The BIG breakthrough: Using deuterium

The mean annual precipitation $\delta \mathrm{D}$ pattern:

Bowen et al. 2005

How does this pattern translate into bird feathers?

Hobson and Wassenaar Oecologia 109:142-148

North American Continental Pattern

- Based on a 40+ year IAEA dataset
- Can be portrayed as the "growing-season average" pattern (e.g. Meehan et al. 2004) OR as an annual average (Bowen et al.) or monthly.
- Involves patterns corrected for elevation or not in the interpolation.
- Lacks an analysis of spatial/temporal variance.
- Some areas of the continent are poorly represented
- However, we are typically interested in the pattern of deuterium in organisms and not in precipitation per se.
- This requires knowledge of the isotopic discrimination between precipitation and the organism of interest.
- For songbirds, ducks and cranes, we use a value of -25 per mil, but other groups differ.

For most birds, their feathers should follow this map...

For raptors, a bit different...

Some examples of how the deuterium approach have been used

Rubenstein et al. (Science 2002)

"Leapfrog" migration revealed ..

Kelly et al. (Oecologia 2002)

Passage times and origins of migrating hawksmore northern birds arrive later

Smith et al. J.A.B. 34:387-392

More information from migration monitoring stations

Breeding- and Wintering-Ground Tracers

SD Head Feathers (wintering ground)

סD Tail Feathers (breeding ground)

Breeding-Ground Tracer

Wintering-Ground Tracer

North \longleftrightarrow South

North \longleftrightarrow South

סD Head Feathers (\%o)

Catchment area of White-throated Sparrows banded at the Delta Marsh Bird Observatory

Origins of hunter-killed Sandhill Cranes?

Combining isotope results with the isotope basemap GIS layer

Rusty Blackbird

Historical distribution from museum skins ($\mathrm{n}=199$) for birds wintering west of the Appalachians.

Current origins from birds wintering west of the Appalachians ($n=140$)....

Origins of birds wintering east of the appalachians ($\mathrm{n}=67$) ...

Variance in assignment. This recent study from Queen's confirms our use of the -25 per mil factor AND shows small (± 4 per mil) over a 5 -year period for this site

Langin et al. 2007 Oecologia

So, an optimistic scenario is that the error we can expect corresponds to about 2 degrees of latitude BUT more work is needed on this.

For CMMN, we have a robust tool that is suitable for delineating approximate catchment areas of spring and fall migrants

